5,212 research outputs found

    Marginal Maximum Likelihood Estimation of Item Response Models in R

    Get PDF
    Item response theory (IRT) models are a class of statistical models used by researchers to describe the response behaviors of individuals to a set of categorically scored items. The most common IRT models can be classified as generalized linear fixed- and/or mixed-effect models. Although IRT models appear most often in the psychological testing literature, researchers in other fields have successfully utilized IRT-like models in a wide variety of applications. This paper discusses the three major methods of estimation in IRT and develops R functions utilizing the built-in capabilities of the R environment to find the marginal maximum likelihood estimates of the generalized partial credit model. The currently available R packages ltm is also discussed.

    Bayesian Nonparametric Hidden Semi-Markov Models

    Full text link
    There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden Markov Model for learning from sequential and time-series data. However, in many settings the HDP-HMM's strict Markovian constraints are undesirable, particularly if we wish to learn or encode non-geometric state durations. We can extend the HDP-HMM to capture such structure by drawing upon explicit-duration semi-Markovianity, which has been developed mainly in the parametric frequentist setting, to allow construction of highly interpretable models that admit natural prior information on state durations. In this paper we introduce the explicit-duration Hierarchical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM) and develop sampling algorithms for efficient posterior inference. The methods we introduce also provide new methods for sampling inference in the finite Bayesian HSMM. Our modular Gibbs sampling methods can be embedded in samplers for larger hierarchical Bayesian models, adding semi-Markov chain modeling as another tool in the Bayesian inference toolbox. We demonstrate the utility of the HDP-HSMM and our inference methods on both synthetic and real experiments

    Dirichlet Posterior Sampling with Truncated Multinomial Likelihoods

    Full text link
    We consider the problem of drawing samples from posterior distributions formed under a Dirichlet prior and a truncated multinomial likelihood, by which we mean a Multinomial likelihood function where we condition on one or more counts being zero a priori. Sampling this posterior distribution is of interest in inference algorithms for hierarchical Bayesian models based on the Dirichlet distribution or the Dirichlet process, particularly Gibbs sampling algorithms for the Hierarchical Dirichlet Process Hidden Semi-Markov Model. We provide a data augmentation sampling algorithm that is easy to implement, fast both to mix and to execute, and easily scalable to many dimensions. We demonstrate the algorithm's advantages over a generic Metropolis-Hastings sampling algorithm in several numerical experiments

    Multidisciplinary Management of Patients with Unresectable Hepatocellular Carcinoma: A Critical Appraisal of Current Evidence

    Get PDF
    Hepatocellular carcinoma (HCC) is a leading cause of new cancer diagnoses in the United States, with an incidence that is expected to rise. The etiology of HCC is varied and can lead to differences between patients in terms of presentation and natural history. Subsequently, physicians treating these patients need to consider a variety of disease and patient characteristics when they select from the many different treatment options that are available for these patients. At the same time, the treatment landscape for patients with HCC, particularly those with unresectable HCC, has been rapidly evolving as new, evidence-based options become available. The treatment plan for patients with HCC can include surgery, transplant, ablation, transarterial chemoembolization, transarterial radioembolization, radiation therapy, and/or systemic therapies. Implementing these different modalities, where the optimal sequence and/or combination has not been defined, requires coordination between physicians with different specialties, including interventional radiologists, hepatologists, and surgical and medical oncologists. As such, the implementation of a multidisciplinary team is necessary to develop a comprehensive care plan for patients, especially those with unresectable HCC

    Marginal Maximum Likelihood Estimation of Item Response Models in R

    Get PDF
    Item response theory (IRT) models are a class of statistical models used by researchers to describe the response behaviors of individuals to a set of categorically scored items. The most common IRT models can be classified as generalized linear fixed- and/or mixed-effect models. Although IRT models appear most often in the psychological testing literature, researchers in other fields have successfully utilized IRT-like models in a wide variety of applications. This paper discusses the three major methods of estimation in IRT and develops R functions utilizing the built-in capabilities of the R environment to find the marginal maximum likelihood estimates of the generalized partial credit model. The currently available R packages ltm is also discussed

    Hospitals and Local Taxation: The Troubled Tale of Property Tax

    Get PDF
    The taxation of hospitals is plagued with subjectivity, which especially burdens nonprofit hospitals. Inconsistencies across localities further exacerbate the uncertainty encountered by nonprofit hospitals seeking local tax exemptions. While federal and state tax implications for nonprofit hospitals receive most of the attention from debaters and scholars, local property tax exemptions are also of significant value for nonprofit hospitals and have been largely overlooked. This Comment explores the policy arguments for and against nonprofit status for hospitals. It shows that while the federal government has chosen relatively bright-line rules for determining non-profit status, localities are far less predictable. This Comment contributes to the literature by (1) highlighting the overlooked local taxation implications on the non/for profit hospital debate, (2) analyzing the inefficiencies that are created through inconsistencies across localities, and (3) suggesting the implementation of clear expectations for hospitals to receive specified tax breaks

    Towards Machine Learning-Based Demand Response Forecasting Using Smart Grid Data

    Get PDF
    Demand response is a valuable tool for improving the reliability, stability, and financial efficiency of smart grids. With the intention of altering customer power consumption patterns, utility companies often implement strategies such as time-of-use (TOU) programs. Although effective in some situations, TOU programs struggle to perform in highly developed countries due to the complexity of human behavior. In this study, we analyze power consumption readings from smart meters from 5567 households in London, UK from November 2011 to February 2014 to measure the success of the TOU program. We additionally consider the variability of weather conditions and customer demographics when determining program outcome. We establish a relationship between time of day and low/high power consumption both in standard (STD) customers and TOU customers. Furthermore, we apply deep learning via a Long short-term memory (LSTM) model and determine predictability based on weather features through drill down operations

    America the Divisible: Local Taxes and the SALT Subsidy

    Get PDF
    The state and local tax (SALT) deduction subsidizes localities in a way that has not fully been appreciated by policymakers, practitioners, or academics. While the state portion of the SALT deduction captures headlines and receives significant attention from academics, the local portion has been overlooked. Local taxes introduce concerns that are not relevant to state-levied taxes. The local tax deduction provides a greater subsidy, per capita, for wealthy localities than it does for economically heterogeneous or less wealthy localities. This Note is the first to quantify the subsidy received by localities through the SALT deduction. This Note contributes to the literature by (1) examining the overlooked local portion of the SALT deduction, (2) quantifying the SALT subsidy received by localities, and (3) noting the impact of the Tax Cuts and Jobs Act on the SALT subsidy

    Analyzing Source Apportioned Methane in Northern California During DISCOVER-AQ-CA Using Airborne Measurements and Model Simulations

    Get PDF
    This study analyzes source apportioned methane (CH4) emissions and atmospheric concentrations in northern California during the Discover-AQ-CA field campaign using airborne measurement data and model simulations. Source apportioned CH4 emissions from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.2 were applied in the 3-D chemical transport model GEOS-Chem and analyzed using airborne measurements taken as part of the Alpha Jet Atmospheric eXperiment over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV). During the time period of the Discover-AQ-CA field campaign EDGAR inventory CH4 emissions were 5.30 Gg/day (Gg 1.0 109 grams) (equating to 1.9 103 Gg/yr) for all of California. According to EDGAR, the SFBA and northern SJV region contributes 30 of total emissions from California. Source apportionment analysis during this study shows that CH4 concentrations over this area of northern California are largely influenced by global emissions from wetlands and local/global emissions from gas and oil production and distribution, waste treatment processes, and livestock management. Model simulations, using EDGAR emissions, suggest that the model under-estimates CH4 concentrations in northern California (average normalized mean bias (NMB) -5 and linear regression slope 0.25). The largest negative biases in the model were calculated on days when hot spots of local emission sources were measured and atmospheric CH4 concentrations reached values 3.0 parts per million (model NMB -10). Sensitivity emission studies conducted during this research suggest that local emissions of CH4 from livestock management processes are likely the primary source of the negative model bias. These results indicate that a variety, and larger quantity, of measurement data needs to be obtained and additional research is necessary to better quantify source apportioned CH4 emissions in California and further the understanding of the physical processes controlling them

    How Can TOLNet Help to Better Understand Tropospheric Ozone? A Satellite Perspective

    Get PDF
    Potential sources of a priori ozone (O3) profiles for use in Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite tropospheric O3 retrievals are evaluated with observations from multiple Tropospheric Ozone Lidar Network (TOLNet) systems in North America. An O3 profile climatology (tropopause-based O3 climatology (TB-Clim), currently proposed for use in the TEMPO O3 retrieval algorithm) derived from ozonesonde observations and O3 profiles from three separate models (operational Goddard Earth Observing System (GEOS-5) Forward Processing (FP) product, reanalysis product from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2), and the GEOS-Chem chemical transport model (CTM)) were: 1) evaluated with TOLNet measurements on various temporal scales (seasonally, daily, hourly) and 2) implemented as a priori information in theoretical TEMPO tropospheric O3 retrievals in order to determine how each a priori impacts the accuracy of retrieved tropospheric (0-10 km) and lowermost tropospheric (LMT, 0-2 km) O3 columns. We found that all sources of a priori O3 profiles evaluated in this study generally reproduced the vertical structure of summer-averaged observations. However, larger differences between the a priori profiles and lidar observations were observed when evaluating inter-daily and diurnal variability of tropospheric O3. The TB-Clim O3 profile climatology was unable to replicate observed inter-daily and diurnal variability of O3 while model products, in particular GEOS-Chem simulations, displayed more skill in reproducing these features. Due to the ability of models, primarily the CTM used in this study, on average to capture the inter-daily and diurnal variability of tropospheric and LMT O3 columns, using a priori profiles from CTM simulations resulted in TEMPO retrievals with the best statistical comparison with lidar observations. Furthermore, important from an air quality perspective, when high LMT O3 values were observed, using CTM a priori profiles resulted in TEMPO LMT O3 retrievals with the least bias. The application of time-specific (non-climatological) hourly/daily model predictions as the a priori profile in TEMPO O3 retrievals will be best suited when applying this data to study air quality or event-based processes as the standard retrieval algorithm will still need to use a climatology product. Follow-on studies to this work are currently being conducted to investigate the application of different CTM-predicted O3 climatology products in the standard TEMPO retrieval algorithm. Finally, similar methods to those used in this study can be easily applied by TEMPO data users to recalculate tropospheric O3 profiles provided from the standard retrieval using a different source of a priori
    corecore